Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
:(:(x, y), z) → :(x, :(y, z))
:(+(x, y), z) → +(:(x, z), :(y, z))
:(z, +(x, f(y))) → :(g(z, y), +(x, a))
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
:(:(x, y), z) → :(x, :(y, z))
:(+(x, y), z) → +(:(x, z), :(y, z))
:(z, +(x, f(y))) → :(g(z, y), +(x, a))
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
:1(z, +(x, f(y))) → :1(g(z, y), +(x, a))
:1(+(x, y), z) → :1(y, z)
:1(:(x, y), z) → :1(y, z)
:1(:(x, y), z) → :1(x, :(y, z))
:1(+(x, y), z) → :1(x, z)
The TRS R consists of the following rules:
:(:(x, y), z) → :(x, :(y, z))
:(+(x, y), z) → +(:(x, z), :(y, z))
:(z, +(x, f(y))) → :(g(z, y), +(x, a))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
:1(z, +(x, f(y))) → :1(g(z, y), +(x, a))
:1(+(x, y), z) → :1(y, z)
:1(:(x, y), z) → :1(y, z)
:1(:(x, y), z) → :1(x, :(y, z))
:1(+(x, y), z) → :1(x, z)
The TRS R consists of the following rules:
:(:(x, y), z) → :(x, :(y, z))
:(+(x, y), z) → +(:(x, z), :(y, z))
:(z, +(x, f(y))) → :(g(z, y), +(x, a))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPSizeChangeProof
Q DP problem:
The TRS P consists of the following rules:
:1(+(x, y), z) → :1(y, z)
:1(:(x, y), z) → :1(y, z)
:1(:(x, y), z) → :1(x, :(y, z))
:1(+(x, y), z) → :1(x, z)
The TRS R consists of the following rules:
:(:(x, y), z) → :(x, :(y, z))
:(+(x, y), z) → +(:(x, z), :(y, z))
:(z, +(x, f(y))) → :(g(z, y), +(x, a))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- :1(:(x, y), z) → :1(y, z)
The graph contains the following edges 1 > 1, 2 >= 2
- :1(:(x, y), z) → :1(x, :(y, z))
The graph contains the following edges 1 > 1
- :1(+(x, y), z) → :1(x, z)
The graph contains the following edges 1 > 1, 2 >= 2
- :1(+(x, y), z) → :1(y, z)
The graph contains the following edges 1 > 1, 2 >= 2